If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y2 + -10y + -6 = 0 Reorder the terms: -6 + -10y + 3y2 = 0 Solving -6 + -10y + 3y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -2 + -3.333333333y + y2 = 0 Move the constant term to the right: Add '2' to each side of the equation. -2 + -3.333333333y + 2 + y2 = 0 + 2 Reorder the terms: -2 + 2 + -3.333333333y + y2 = 0 + 2 Combine like terms: -2 + 2 = 0 0 + -3.333333333y + y2 = 0 + 2 -3.333333333y + y2 = 0 + 2 Combine like terms: 0 + 2 = 2 -3.333333333y + y2 = 2 The y term is -3.333333333y. Take half its coefficient (-1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. -3.333333333y + 2.777777779 + y2 = 2 + 2.777777779 Reorder the terms: 2.777777779 + -3.333333333y + y2 = 2 + 2.777777779 Combine like terms: 2 + 2.777777779 = 4.777777779 2.777777779 + -3.333333333y + y2 = 4.777777779 Factor a perfect square on the left side: (y + -1.666666667)(y + -1.666666667) = 4.777777779 Calculate the square root of the right side: 2.185812842 Break this problem into two subproblems by setting (y + -1.666666667) equal to 2.185812842 and -2.185812842.Subproblem 1
y + -1.666666667 = 2.185812842 Simplifying y + -1.666666667 = 2.185812842 Reorder the terms: -1.666666667 + y = 2.185812842 Solving -1.666666667 + y = 2.185812842 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + y = 2.185812842 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + y = 2.185812842 + 1.666666667 y = 2.185812842 + 1.666666667 Combine like terms: 2.185812842 + 1.666666667 = 3.852479509 y = 3.852479509 Simplifying y = 3.852479509Subproblem 2
y + -1.666666667 = -2.185812842 Simplifying y + -1.666666667 = -2.185812842 Reorder the terms: -1.666666667 + y = -2.185812842 Solving -1.666666667 + y = -2.185812842 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + y = -2.185812842 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + y = -2.185812842 + 1.666666667 y = -2.185812842 + 1.666666667 Combine like terms: -2.185812842 + 1.666666667 = -0.519146175 y = -0.519146175 Simplifying y = -0.519146175Solution
The solution to the problem is based on the solutions from the subproblems. y = {3.852479509, -0.519146175}
| -6-b=-15 | | .5y-3=3 | | -1.5(1.2+b)=2.4 | | 9+4x-12=41 | | 10x-5x+4+3=-8 | | 0.4x-1.2=-3.56 | | -33-x=-23 | | -7.05=1.5(v-2.7) | | 3.596=2.9+0.6n | | 7x+2x-3=42 | | 70*x=5750 | | 2x+3-9x+5=22 | | 5t+5+2t-6t=6+3 | | 5-10z=9z+12 | | 12c-14=106 | | -12-x=-3 | | 10n+12=112 | | y=50+.75y | | -16a=80 | | -2+4x=5x+15 | | 23n=46 | | 7x+3=5x+27 | | 2x^2-36lnx=0 | | 45=211-g | | 2x^3-36lnx=0 | | 211=45+g | | 4(3g+5)=2(5g+7) | | 0.4x-0.2=0.5x+1.5 | | 14+3x=x+3x | | 32+(x-x)=(x-x)+x | | 7+2c=19 | | X+15+32=70 |